Epigenetics – The Molecular Tool in Understanding Abiotic Stress Response in Plants
397
Sobhanian, H., Pahlavan, S., & Meyfour, A., (2020). How does proteomics target plant
environmental stresses in a semi-arid area? Mol. Biol. Rep., 47(4), 3181–3194.
Sokol, A., Kwiatkowska, A., Jerzmanowski, A., & Prymakowska-Bosak, M., (2007).
Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to
abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4
modifications. Planta, 227(1), 245–254.
Sridhar, V. V., Kapoor, A., Zhang, K., Zhu, J., Zhou, T., Hasegawa, P. M., Bressan, R. A., &
Zhu, J. K., (2007). Control of DNA methylation and heterochromatic silencing by histone
H2B deubiquitination. Nature, 447(7145), 735–738.
Srivastava, S., Suprasanna, P., D’souza, S., (2012). Mechanisms of arsenic tolerance and
detoxification in plants and their application in transgenic technology: A critical appraisal.
Int. J. Phytoremediation, 14(5), 506–517.
Sudan, J., Raina, M., & Singh, R., (2018). Plant epigenetic mechanisms: Role in abiotic stress
and their generational heritability. 3 Biotech, 8(3), 172.
Sudarsanam, P., & Winston, F., (2000). The Swi/Snf family nucleosome-remodeling
complexes and transcriptional control. Trends Genet., 16(8), 345–351.
Sun, F., Guo, W., Du, J., Ni, Z., Sun, Q., & Yao, Y., (2013). Widespread, abundant, and diverse
TE-associated siRNAs in developing wheat grain. Gene, 522(1), 1–7.
Sunkar, R., & Zhu, J. K., (2004). Novel and stress-regulated microRNAs and other small
RNAs from Arabidopsis. Plant Cell, 16(8), 2001–2019.
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R., (2014). Abiotic and biotic
stress combinations. New Phytol., 203(1), 32–43.
Tack, J., Barkley, A., & Nalley, L. L., (2015). Effect of warming temperatures on US wheat
yields. PNAS., 112(22), 6931–6936.
Tan, J., He, S., Yan, S., Li, Y., Li, H., Zhang, H., Zhao, L., & Li, L., (2014). Exogenous EDDS
modifies copper-induced various toxic responses in rice. Protoplasma, 251(5), 1213–1221.
Tang, L., Nogales, E., & Ciferri, C., (2010). Structure and function of SWI/SNF chromatin
remodeling complexes and mechanistic implications for transcription. Prog. Biophys. Mol.
Biol., 102(2, 3), 122–128.
Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D., & Patel, D. J., (2007). How chromatin-
binding modules interpret histone modifications: Lessons from professional pocket pickers.
Nat. Struct. Biol., 14(11), 1025–1040.
Teakle, N., Real, D., & Colmer, T., (2006). Growth and ion relations in response to combined
salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus
tenuis. Plant Soil, 289(1), 369–383.
Teperino, R., Schoonjans, K., & Auwerx, J., (2010). Histone methyl transferases and
demethylases; can they link metabolism and transcription? Cell Metab., 12(4), 321–327.
Tricker, P. J., (2015). Transgenerational inheritance or resetting of stress-induced epigenetic
modifications: Two sides of the same coin. Front. Plant Sci., 6, 699.
Tricker, P. J., Gibbings, J. G., Rodríguez, L. C. M., Hadley, P., & Wilkinson, M. J., (2012).
Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of
genes controlling stomatal development. J. Exp. Bot., 63(10), 3799–3813.
Trucchi, E., Mazzarella, A. B., Gilfillan, G. D., Lorenzo, M. T., Schönswetter, P., & Paun,
O., (2016). Bs RAD seq: Screening DNA methylation in natural populations of non‐model
species. Mol. Ecol., 25(8), 1697–1713.