Epigenetics – The Molecular Tool in Understanding Abiotic Stress Response in Plants

397

Sobhanian, H., Pahlavan, S., & Meyfour, A., (2020). How does proteomics target plant

environmental stresses in a semi-arid area? Mol. Biol. Rep., 47(4), 3181–3194.

Sokol, A., Kwiatkowska, A., Jerzmanowski, A., & Prymakowska-Bosak, M., (2007).

Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to

abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4

modifications. Planta, 227(1), 245–254.

Sridhar, V. V., Kapoor, A., Zhang, K., Zhu, J., Zhou, T., Hasegawa, P. M., Bressan, R. A., &

Zhu, J. K., (2007). Control of DNA methylation and heterochromatic silencing by histone

H2B deubiquitination. Nature, 447(7145), 735–738.

Srivastava, S., Suprasanna, P., D’souza, S., (2012). Mechanisms of arsenic tolerance and

detoxification in plants and their application in transgenic technology: A critical appraisal.

Int. J. Phytoremediation, 14(5), 506–517.

Sudan, J., Raina, M., & Singh, R., (2018). Plant epigenetic mechanisms: Role in abiotic stress

and their generational heritability. 3 Biotech, 8(3), 172.

Sudarsanam, P., & Winston, F., (2000). The Swi/Snf family nucleosome-remodeling

complexes and transcriptional control. Trends Genet., 16(8), 345–351.

Sun, F., Guo, W., Du, J., Ni, Z., Sun, Q., & Yao, Y., (2013). Widespread, abundant, and diverse

TE-associated siRNAs in developing wheat grain. Gene, 522(1), 1–7.

Sunkar, R., & Zhu, J. K., (2004). Novel and stress-regulated microRNAs and other small

RNAs from Arabidopsis. Plant Cell, 16(8), 2001–2019.

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R., (2014). Abiotic and biotic

stress combinations. New Phytol., 203(1), 32–43.

Tack, J., Barkley, A., & Nalley, L. L., (2015). Effect of warming temperatures on US wheat

yields. PNAS., 112(22), 6931–6936.

Tan, J., He, S., Yan, S., Li, Y., Li, H., Zhang, H., Zhao, L., & Li, L., (2014). Exogenous EDDS

modifies copper-induced various toxic responses in rice. Protoplasma, 251(5), 1213–1221.

Tang, L., Nogales, E., & Ciferri, C., (2010). Structure and function of SWI/SNF chromatin

remodeling complexes and mechanistic implications for transcription. Prog. Biophys. Mol.

Biol., 102(2, 3), 122–128.

Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D., & Patel, D. J., (2007). How chromatin-

binding modules interpret histone modifications: Lessons from professional pocket pickers.

Nat. Struct. Biol., 14(11), 1025–1040.

Teakle, N., Real, D., & Colmer, T., (2006). Growth and ion relations in response to combined

salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus

tenuis. Plant Soil, 289(1), 369–383.

Teperino, R., Schoonjans, K., & Auwerx, J., (2010). Histone methyl transferases and

demethylases; can they link metabolism and transcription? Cell Metab., 12(4), 321–327.

Tricker, P. J., (2015). Transgenerational inheritance or resetting of stress-induced epigenetic

modifications: Two sides of the same coin. Front. Plant Sci., 6, 699.

Tricker, P. J., Gibbings, J. G., Rodríguez, L. C. M., Hadley, P., & Wilkinson, M. J., (2012).

Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of

genes controlling stomatal development. J. Exp. Bot., 63(10), 3799–3813.

Trucchi, E., Mazzarella, A. B., Gilfillan, G. D., Lorenzo, M. T., Schönswetter, P., & Paun,

O., (2016). Bs RAD seq: Screening DNA methylation in natural populations of non‐model

species. Mol. Ecol., 25(8), 1697–1713.